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Deep neural nets that exploit:

- translation invariance (weight sharing) 
- hierarchical compositionality
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Convolutional neural networks (CNNs)

(Animation by  
Vincent Dumoulin) (Source: Wikipedia)

Recurrent neural networks (RNNs)

(Source: Christopher Olah’s blog)
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Traditional vs. “deep” learning
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Traditional approach

Hand-designed 
feature extractor

Classifier 
“on top”

Output

End-to-end learning

Deep neural network Output



Deep Learning on Graph-Structured Data Thomas Kipf

CNNs: Message passing on a grid-graph

6

(Animation by  
Vincent Dumoulin)

Single CNN layer with 3x3 filter:
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CNNs: Message passing on a grid-graph
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(Animation by  
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

…

Update for a single pixel: 
• Transform messages individually 

• Add everything up

Full update:
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What if our data looks like this?

Real-world examples:
• Social networks 
• World-wide-web 
• Protein-interaction networks

• Telecommunication networks 
• Knowledge graphs 
• …
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Graph: Adjacency matrix: A

A

C

B

D

E

A    B    C    D    E
A
B
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D
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0     1     1     1     0
1     0     0     1     1
1     0     0     1     0
1     1     1     0     1
0     1     0     1     0
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• Trainable in            time 
• Applicable even if the input graph changes

Model wish list:

Graph: Adjacency matrix: A

A

C

B

D

E

A    B    C    D    E
A
B
C
D
E

0     1     1     1     0
1     0     0     1     1
1     0     0     1     0
1     1     1     0     1
0     1     0     1     0
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A    B    C    D    E
A
B
C
D
E

0     1     1     1     0          1     0
1     0     0     1     1          0     0
1     0     0     1     0          0     1
1     1     1     0     1          1     1
0     1     0     1     0          1     0

Feat

A naïve approach
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• Take adjacency matrix     and feature matrix   

• Concatenate them  

• Feed them into deep (fully connected) neural net 

• Done?

?A
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D

E

[A,X]
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A    B    C    D    E
A
B
C
D
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0     1     1     1     0          1     0
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Feat

A naïve approach

9

• Take adjacency matrix     and feature matrix   

• Concatenate them  

• Feed them into deep (fully connected) neural net 

• Done?

Problems:

• Huge number of parameters 
• Re-train if graph changes

?
We need weight sharing! 

➡ CNNs on graphs or  
“Graph Convolutional Networks” (GCNs)

A

C

B

D

E

[A,X]
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GCNs with 1st-order message passing
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Consider this  
undirected graph:

Calculate update 
for node in red:

(related idea was first proposed in Scarselli et al. 2009)

Update 
rule:

: neighbor indices

: norm. constant 
   (per edge)

Note: We could also choose simpler or more general functions over the neighborhood
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GCN model architecture
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Input: Feature matrix                        , preprocessed adjacency matrix  

[Kipf & Welling, ICLR 2017]
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What does it do? An example.

f(           ) =

Forward pass through untrained 3-layer GCN model

Parameters initialized randomly 2-dim output per node

[Karate Club Network]
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Relation to Weisfeiler-Lehman algorithm
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A “classical” approach for node feature assignment

Useful as graph isomorphism check for most graphs
(exception: highly regular graphs)

GCN:
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Semi-supervised classification on graphs
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Setting:  
Some nodes are labeled (black circle) 
All other nodes are unlabeled 

Task: 
Predict node label of unlabeled nodes

Standard approach:  
graph-based regularization

with

assumes: connected nodes likely to share same label

[Zhu et al., 2003]
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Embedding-based approaches 
Two-step pipeline: 

1) Get embedding for every node 
2) Train classifier on node embedding

Examples: DeepWalk [Perozzi et al., 2014], node2vec [Grover & Leskovec, 2016]
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Semi-supervised classification on graphs

15

Embedding-based approaches 
Two-step pipeline: 

1) Get embedding for every node 
2) Train classifier on node embedding

Examples: DeepWalk [Perozzi et al., 2014], node2vec [Grover & Leskovec, 2016]

Problem: Embeddings are not optimized for classification!

Idea: Train graph-based classifier end-to-end using GCN

Evaluate loss on labeled nodes only:

set of labeled node indices

label matrix

GCN output (after softmax)
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Toy example (semi-supervised learning)
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Video also available here: 
http://tkipf.github.io/graph-convolutional-networks

http://tkipf.github.io/graph-convolutional-networks
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Application: Classification on citation networks
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Input: Citation networks (nodes are papers, edges are citation links,  
           optionally bag-of-words features on nodes) 

Target: Paper category (e.g. stat.ML, cs.LG, …)

(Figure from: Bronstein, Bruna, LeCun, 
Szlam, Vandergheynst, 2016) 
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Dataset statistics

(Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017)

Model: 2-layer GCN
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Classification results (accuracy)

no input features

Dataset statistics

(Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017)

Model: 2-layer GCN
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Experiments and results
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Classification results (accuracy)

no input features

Dataset statistics

(Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017)

Model: 2-layer GCN

Learned representations  
(t-SNE embedding of hidden layer activations)
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Other recent applications
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[Monti et al., 2016]

Molecules

[Duvenaud et al., NIPS 2015]

Shapes

Knowledge 
Graphs

[Schlichtkrull et al., 2017]
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Link prediction with Graph Auto-Encoders
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Encoder

Decoder

X A

Z

Â

q( Z | A, X )

p( A | Z )

GAE

Kipf & Welling, NIPS Bayesian Deep Learning Workshop, 2016
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Further reading
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Blog post Graph Convolutional Networks:  
http://tkipf.github.io/graph-convolutional-networks

Code on Github: 
http://github.com/tkipf/gcn

• E-Mail: T.N.Kipf@uva.nl 

• Twitter: @thomaskipf 

• Web: http://tkipf.github.io

Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017: 
https://arxiv.org/abs/1609.02907

Kipf & Welling, Variational Graph Auto-Encoders, NIPS BDL Workshop, 2016: 
https://arxiv.org/abs/1611.07308

You can get in touch with me via:

Project funded by SAP

http://tkipf.github.io/graph-convolutional-networks
http://github.com/tkipf/gcn
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1611.07308

